3.4.27 \(\int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b \cos (c+d x))^{3/2}} \, dx\) [327]

Optimal. Leaf size=102 \[ \frac {C x \sqrt {\cos (c+d x)}}{b \sqrt {b \cos (c+d x)}}+\frac {B \tanh ^{-1}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{b d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}} \]

[Out]

A*sin(d*x+c)/b/d/cos(d*x+c)^(1/2)/(b*cos(d*x+c))^(1/2)+C*x*cos(d*x+c)^(1/2)/b/(b*cos(d*x+c))^(1/2)+B*arctanh(s
in(d*x+c))*cos(d*x+c)^(1/2)/b/d/(b*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.04, antiderivative size = 102, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.093, Rules used = {18, 3100, 2814, 3855} \begin {gather*} \frac {A \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {B \sqrt {\cos (c+d x)} \tanh ^{-1}(\sin (c+d x))}{b d \sqrt {b \cos (c+d x)}}+\frac {C x \sqrt {\cos (c+d x)}}{b \sqrt {b \cos (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(b*Cos[c + d*x])^(3/2)),x]

[Out]

(C*x*Sqrt[Cos[c + d*x]])/(b*Sqrt[b*Cos[c + d*x]]) + (B*ArcTanh[Sin[c + d*x]]*Sqrt[Cos[c + d*x]])/(b*d*Sqrt[b*C
os[c + d*x]]) + (A*Sin[c + d*x])/(b*d*Sqrt[Cos[c + d*x]]*Sqrt[b*Cos[c + d*x]])

Rule 18

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m - 1/2)*b^(n + 1/2)*(Sqrt[a*v]/Sqrt[b*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && ILtQ[n - 1/2, 0] && IntegerQ[m + n]

Rule 2814

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[b*(x/d)
, x] - Dist[(b*c - a*d)/d, Int[1/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d
, 0]

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {A+B \cos (c+d x)+C \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (b \cos (c+d x))^{3/2}} \, dx &=\frac {\sqrt {\cos (c+d x)} \int \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right ) \sec ^2(c+d x) \, dx}{b \sqrt {b \cos (c+d x)}}\\ &=\frac {A \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {\sqrt {\cos (c+d x)} \int (B+C \cos (c+d x)) \sec (c+d x) \, dx}{b \sqrt {b \cos (c+d x)}}\\ &=\frac {C x \sqrt {\cos (c+d x)}}{b \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}+\frac {\left (B \sqrt {\cos (c+d x)}\right ) \int \sec (c+d x) \, dx}{b \sqrt {b \cos (c+d x)}}\\ &=\frac {C x \sqrt {\cos (c+d x)}}{b \sqrt {b \cos (c+d x)}}+\frac {B \tanh ^{-1}(\sin (c+d x)) \sqrt {\cos (c+d x)}}{b d \sqrt {b \cos (c+d x)}}+\frac {A \sin (c+d x)}{b d \sqrt {\cos (c+d x)} \sqrt {b \cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.08, size = 60, normalized size = 0.59 \begin {gather*} \frac {\sqrt {\cos (c+d x)} \left (C d x \cos (c+d x)+B \tanh ^{-1}(\sin (c+d x)) \cos (c+d x)+A \sin (c+d x)\right )}{d (b \cos (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2)/(Sqrt[Cos[c + d*x]]*(b*Cos[c + d*x])^(3/2)),x]

[Out]

(Sqrt[Cos[c + d*x]]*(C*d*x*Cos[c + d*x] + B*ArcTanh[Sin[c + d*x]]*Cos[c + d*x] + A*Sin[c + d*x]))/(d*(b*Cos[c
+ d*x])^(3/2))

________________________________________________________________________________________

Maple [A]
time = 0.22, size = 72, normalized size = 0.71

method result size
default \(\frac {\left (-2 B \arctanh \left (\frac {-1+\cos \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right )+C \cos \left (d x +c \right ) \left (d x +c \right )+A \sin \left (d x +c \right )\right ) \left (\sqrt {\cos }\left (d x +c \right )\right )}{d \left (b \cos \left (d x +c \right )\right )^{\frac {3}{2}}}\) \(72\)
risch \(\frac {C x \left (\sqrt {\cos }\left (d x +c \right )\right )}{b \sqrt {b \cos \left (d x +c \right )}}+\frac {i {\mathrm e}^{-i \left (d x +c \right )} A}{b \sqrt {b \cos \left (d x +c \right )}\, \sqrt {\cos \left (d x +c \right )}\, d}+\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) B \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{b \sqrt {b \cos \left (d x +c \right )}\, d}-\frac {\left (\sqrt {\cos }\left (d x +c \right )\right ) B \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{b \sqrt {b \cos \left (d x +c \right )}\, d}\) \(142\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/d*(-2*B*arctanh((-1+cos(d*x+c))/sin(d*x+c))*cos(d*x+c)+C*cos(d*x+c)*(d*x+c)+A*sin(d*x+c))*cos(d*x+c)^(1/2)/(
b*cos(d*x+c))^(3/2)

________________________________________________________________________________________

Maxima [A]
time = 0.66, size = 157, normalized size = 1.54 \begin {gather*} \frac {\frac {4 \, A \sqrt {b} \sin \left (2 \, d x + 2 \, c\right )}{b^{2} \cos \left (2 \, d x + 2 \, c\right )^{2} + b^{2} \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, b^{2} \cos \left (2 \, d x + 2 \, c\right ) + b^{2}} + \frac {B {\left (\log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} + 2 \, \sin \left (d x + c\right ) + 1\right ) - \log \left (\cos \left (d x + c\right )^{2} + \sin \left (d x + c\right )^{2} - 2 \, \sin \left (d x + c\right ) + 1\right )\right )}}{b^{\frac {3}{2}}} + \frac {4 \, C \arctan \left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{b^{\frac {3}{2}}}}{2 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

1/2*(4*A*sqrt(b)*sin(2*d*x + 2*c)/(b^2*cos(2*d*x + 2*c)^2 + b^2*sin(2*d*x + 2*c)^2 + 2*b^2*cos(2*d*x + 2*c) +
b^2) + B*(log(cos(d*x + c)^2 + sin(d*x + c)^2 + 2*sin(d*x + c) + 1) - log(cos(d*x + c)^2 + sin(d*x + c)^2 - 2*
sin(d*x + c) + 1))/b^(3/2) + 4*C*arctan(sin(d*x + c)/(cos(d*x + c) + 1))/b^(3/2))/d

________________________________________________________________________________________

Fricas [A]
time = 0.44, size = 317, normalized size = 3.11 \begin {gather*} \left [-\frac {2 \, B \sqrt {-b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sin \left (d x + c\right )}{b \sqrt {\cos \left (d x + c\right )}}\right ) \cos \left (d x + c\right )^{2} + C \sqrt {-b} \cos \left (d x + c\right )^{2} \log \left (2 \, b \cos \left (d x + c\right )^{2} + 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {-b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - b\right ) - 2 \, \sqrt {b \cos \left (d x + c\right )} A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, b^{2} d \cos \left (d x + c\right )^{2}}, \frac {2 \, C \sqrt {b} \arctan \left (\frac {\sqrt {b \cos \left (d x + c\right )} \sin \left (d x + c\right )}{\sqrt {b} \cos \left (d x + c\right )^{\frac {3}{2}}}\right ) \cos \left (d x + c\right )^{2} + B \sqrt {b} \cos \left (d x + c\right )^{2} \log \left (-\frac {b \cos \left (d x + c\right )^{3} - 2 \, \sqrt {b \cos \left (d x + c\right )} \sqrt {b} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{3}}\right ) + 2 \, \sqrt {b \cos \left (d x + c\right )} A \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{2 \, b^{2} d \cos \left (d x + c\right )^{2}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[-1/2*(2*B*sqrt(-b)*arctan(sqrt(b*cos(d*x + c))*sqrt(-b)*sin(d*x + c)/(b*sqrt(cos(d*x + c))))*cos(d*x + c)^2 +
 C*sqrt(-b)*cos(d*x + c)^2*log(2*b*cos(d*x + c)^2 + 2*sqrt(b*cos(d*x + c))*sqrt(-b)*sqrt(cos(d*x + c))*sin(d*x
 + c) - b) - 2*sqrt(b*cos(d*x + c))*A*sqrt(cos(d*x + c))*sin(d*x + c))/(b^2*d*cos(d*x + c)^2), 1/2*(2*C*sqrt(b
)*arctan(sqrt(b*cos(d*x + c))*sin(d*x + c)/(sqrt(b)*cos(d*x + c)^(3/2)))*cos(d*x + c)^2 + B*sqrt(b)*cos(d*x +
c)^2*log(-(b*cos(d*x + c)^3 - 2*sqrt(b*cos(d*x + c))*sqrt(b)*sqrt(cos(d*x + c))*sin(d*x + c) - 2*b*cos(d*x + c
))/cos(d*x + c)^3) + 2*sqrt(b*cos(d*x + c))*A*sqrt(cos(d*x + c))*sin(d*x + c))/(b^2*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {A + B \cos {\left (c + d x \right )} + C \cos ^{2}{\left (c + d x \right )}}{\left (b \cos {\left (c + d x \right )}\right )^{\frac {3}{2}} \sqrt {\cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)**2)/(b*cos(d*x+c))**(3/2)/cos(d*x+c)**(1/2),x)

[Out]

Integral((A + B*cos(c + d*x) + C*cos(c + d*x)**2)/((b*cos(c + d*x))**(3/2)*sqrt(cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*cos(d*x+c)+C*cos(d*x+c)^2)/(b*cos(d*x+c))^(3/2)/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)/((b*cos(d*x + c))^(3/2)*sqrt(cos(d*x + c))), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {C\,{\cos \left (c+d\,x\right )}^2+B\,\cos \left (c+d\,x\right )+A}{\sqrt {\cos \left (c+d\,x\right )}\,{\left (b\,\cos \left (c+d\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(b*cos(c + d*x))^(3/2)),x)

[Out]

int((A + B*cos(c + d*x) + C*cos(c + d*x)^2)/(cos(c + d*x)^(1/2)*(b*cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________